• Home
  • About
  • The Good Strategy Blog
  • Strategy
    • Data Warehousing
    • Ask Martyn
  • MARTYN
    • MARTYN’S MUSIC
    • Must-Read Books from Martyn
    • PODCASTS
    • MARTYN.ES

GOOD STRATEGY

~ DATA, INFORMATION & KNOWLEDGE

GOOD STRATEGY

Tag Archives: Martyn Richard Jones

Consider this: Big Data Forever!

14 Sat Mar 2015

Posted by Martyn Jones in Big Data, Consider this, dark data, Martyn Jones

≈ Leave a comment

Tags

Big Data, Good Strat, Good Strategy, Martyn Jones, Martyn Richard Jones


Dans ce pays-ci, il est bon de tuer de temps en temps un amiral pour encourager les autres – Voltair

My gran used to tell me that honesty pays. Of course, she never really understood banking or IT, probably because she didn’t want to know anything about them, and she never lived to witness the amazing hype circuses, the spin doctors spiel or the focus-group dog-and-pony show of the 21st century. Indeed, if honesty were a guaranteed payer my gran would have amassed more wealth than even Warren Buffet himself.

If my gran lived today, she might reflect on what Big Data might be about – maybe she would even consider it benignly, as a sort of shelter for fallen men of once uncertain virtue. We will never know. So onwards and upwards.

The Harvard Business Review contemplated honesty in somewhat different terms:

“Honesty is, in fact, primarily a moral choice. Businesspeople do tell themselves that, in the long run, they will do well by doing good. But there is little factual or logical basis for this conviction. Without values, without a basic preference for right over wrong, trust based on such self-delusion would crumble in the face of temptation.”

In a marvellous book, A few good from Univac, David E. Lundstrom narrates the story of Sperry Univac in the 1960s, one of the true great innovators in the first forty years of IT, and includes an allegory taken from the engineering front-line. I will recount it here, edited to highlight the zeitgeist, for your entertainment and as Voltaire put it, “to encourage the others”:

In the beginning was the Big Data Plan.

And then came the Big Data Assumptions.

And the Assumptions were without form.

And the Plan was without substance.

And darkness was upon the face of the Workers.

And they spoke amongst themselves, saying: “It is a crock of shit, and it stinketh.”

And the workers went unto their Supervisors and said: “It is a pail of dung, and none may abide the odor thereof.”

And the Supervisors went unto their Managers, saying: “It is a container of excrement, and it is very strong, such that none may abide by it.”

And the Managers went unto their Directors, saying: “It is a vessel of fertilizer, and none may abide its strength.”

And the Directors spoke amongst themselves, saying to one another: “It contains that which aids plant growth, and it is very powerful.”

And the Vice Presidents went unto the President, saying unto him: “This new plan will actively promote the growth and vigor of the company, with powerful effects.”

And the President looked upon the Big Data Plan, and saw that it was good.

“But?” I hear you say, “why fight it, why not take advantage of the Big Data zeitgeist?”, “Why not cash in on the grand bonanza Big Data bandwagon?” or “Monetise the 3 three famous Vs of Big Data?”

Well, it had crossed my mind, briefly, and (outside of the USA) we’ve all done stuff we have not entirely believed in, so the temptation to cash in is present, capisci? This paraphrasing of a piece from My Blue Heaven might give you a better idea:

One of my best friends makes his living as a completely phony Big Data Scientist. For two hundred bucks he can make you a Data Scientist or a Big Data guru. Some guys give you an education but this guy gives you immediate access to high paying jobs, sex that would make the 256 trillion Shades of Blah blush and a life in the City, the Big Apple or a small town in Germany.

Moreover, for an extra 250 bucks (limited time offer) you can also become a certified Big Data Neuro Trainer, which will allow you to do unto others what has been done unto you.

I also considered Big Data Brokerage, Big Data Certification and Big Data Independent Trading (New York – Paris – Peckham). The opportunities are immense.

However, what happens when the Big Data well runs dry, and I (and many others get tarnished with the mark of Big Data) become pariah by complicity, collusion or simple association?

That question I will leave for another day. But just consider the following.

All right, I admit, I am a big long-time fan of comic genius Mel Brooks, who has a knack of capturing deep insight from the human condition, especially when the human condition is off guard and shallow. In that vein, this is how I like to think the dialogue from the Dole Office scene from The History of the World Part Two would have gone, if he were to write that today:

Dole Office Clerk: Occupation?

Data Magnus Comicus: Stand-up Big Data scientist.

Dole Office Clerk: What?

Data Magnus Comicus: Stand-up Big Data scientist. I coalesce the vaporous datas of the human interaction with the social-media networking, Internet of Everything, and always-connected experience into a… viable, analytical and meaningful predictive-comprehension.

Dole Office Clerk: Oh, a Big Data bullshit artist!

Data Magnus Comicus: *Grumble*…

Dole Office Clerk: Did you bullshit Big Data last week?

Data Magnus Comicus: No.

Dole Office Clerk: Did you try to bullshit Big Data last week?

Data Magnus Comicus: Yes!

Finally, I leave you with some wise words from Israeli American professor of psychology and behavioural economics, Dan Ariely:

“Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it…”

Many thanks for reading.

What’s all the fuss about Dark Data? Big Data’s New Best Friend

10 Tue Mar 2015

Posted by Martyn Jones in All Data, Big Data, Consider this, dark data, Good Strat

≈ Leave a comment

Tags

All Data, Big Data, dark data, data architecture, data management, Good Strat, Martyn Jones, Martyn Richard Jones


What is Dark Data?

Dark data, what is it and why all the fuss?

First, I’ll give you the short answer. The right dark data, just like its brother right Big Data, can be monetised – honest, guv! There’s loadsa money to be made from dark data by ‘them that want to’, and as value propositions go, seriously, what could be more attractive?

Let’s take a look at the market.

Gartner defines dark data as “the information assets organizations collect, process and store during regular business activities, but generally fail to use for other purposes” (IT Glossary – Gartner)

Techopedia describes dark data as being data that is “found in log files and data archives stored within large enterprise class data storage locations. It includes all data objects and types that have yet to be analyzed for any business or competitive intelligence or aid in business decision making.” (Techopedia – Cory Jannsen)

Cory also wrote that “IDC, a research firm, stated that up to 90 percent of big data is dark data.”

In an interesting whitepaper from C2C Systems it was noted that “PST files and ZIP files account for nearly 90% of dark data by IDC Estimates.” and that dark data is “Very simply, all those bits and pieces of data floating around in your environment that aren’t fully accounted for:” (Dark Data, Dark Email – C2C Systems)

Elsewhere, Charles Fiori defined dark data as “data whose existence is either unknown to a firm, known but inaccessible, too costly to access or inaccessible because of compliance concerns.” (Shedding Light on Dark Data – Michael Shashoua)

Not quite the last insight, but in a piece published by Datameer, John Nicholson wrote that “Research firm IDC estimates that 90 percent of digital data is dark.” And went on to state that “This dark data may come in the form of machine or sensor logs” (Shine Light on Dark Data – Joe Nicholson via Datameer)

Finally, Lug Bergman of NGDATA wrote this in a sponsored piece in Wired: “It” – dark data – “is different for each organization, but it is essentially data that is not being used to get a 360 degree view of a customer.

Say what?

Okay, let’s see if we can be a bit more specific about the content of dark data?

Items on the dark data ticket include: Email; Instant messages; documents; Sharepoint content; content of collaboration databases; ZIP files; log files; archived sensor and signal data; archived web content; aged audit trails; operational database backups – full and incremental; roll-back, redo and spooled data files; sunsetted applications (code and documentation); partially developed and then abandoned applications; and, code snippets.

Most importantly, dark data is data that is not actively in use, is underutilised, or is something else. Seriously.

What can you do with it?

So, the conclusion that some have come to is this: there is a vast collection of data in various formats waiting to be monetised.

Personally, the idea that really grabs my attention is the potential ability to do novel forensic research on email. If only to find out what happened in the past.

For example, maybe it would be fascinating to see how significant challenges were identified, flagged and discussed; how strategic responses to those challenges were formulated, chosen and executed; and, how the outcomes of all of that process were reflected in email communications.

I think that this line of work can be very interesting for some people, and that interesting insights may be uncovered, but I would hate to have to put a tangible value on it, if only to avoid adding to the already galactic magnitudes of nonsense and hype surrounding certain data topics.

There are other more mundane uses of dark data.

Imagine that you are just about to embark on a Data Warehouse project (you really are a late adopter aren’t you), and you want establish a base collection of historical data. Where do you get that historical data from?

Right! Operational databases are not characteristically used to store significant amounts of historical reference data and historical transactions beyond a certain time window; there are performance and other reasons for keeping OLTP systems as lean as possible, so, initial loads of historical data is typically recreated in the Data Warehouse from backups, audit trails or logs.

Dark data and data governance

You don’t need a Chief Data Officer in order to be able to catalogue all your data assets. However, it is still good idea to have a reliable inventory of all your business data, including the euphemistically termed Big Data and dark data.

If you have such an inventory, you will know:

What you have, where it is, where it came from, what it is used in, what qualitative or quantitative value it may have, and how it relates to other data (including metadata) and the business.

What needs to be kept, and for how long, and what can be safely discarded, and when.

The risks associated with the retention or loss of that data.

If you don’t have such a catalogue and have never done a data inventory then a full data inventory and audit seems to be your new best friend.

What does it mean?

Simply stated, you may have dark data that has value, or it may be a simple collection of worthless digital nostalgia. But if you don’t know what you have, it may pay to find out what’s there, and if necessary, to let it go.

There is no point in hoarding unneeded and unwanted rubbish data. That is simply not good data management.

Finally a word on all the fuss surrounding dark data.

Failure to monetize when there is value to be obtained from dark data is one thing, claiming that value can be invariably obtained whilst actually not knowing what the data is, or how it could be monetised, is just adding to the mountain of data related ‘nonsense and hype’ doing the rounds these days. Please consider not adding to that mountain.

That’s all folks

British Rail, the national UK rail Company, used to be notorious for the number of delays and cancellations to services, and their reasons for failing to meet their obligations became stranger and stranger.

In winter, it would snow and there would be problems. And people would ask ‘how come you couldn’t deal with the snow this year, we’ve had snow for centuries?’ And back came the answers ‘Yes, Sir, but this year it was the wrong type of snow’. In autumn (the fall), it was ‘the wrong types of leaves, and ‘the wrong type of rain’, and in Summer, the ‘wrong type of sunshine’ and so on and so forth.

I hope this will not be the excuse from the Big Data and dark data pundits and punters when the much-vaunted and ‘almost’ guaranteed monetisation isn’t frequently realised.

‘Of course Big Data gives you big dollar benefits, it was just littered with the wrong type of data’ or ‘you just weren’t trying hard enough’.

Many thanks for reading.

Consider this: Big Data is not Data Warehousing

06 Fri Mar 2015

Posted by Martyn Jones in Big Data, Consider this, Data Warehousing, Good Strat, hadoop, hdfs, Martyn Jones

≈ 4 Comments

Tags

Big Data, enterprise data warehousing, Good Strat, Good Strategy, Martyn Jones, Martyn Richard Jones


Hold this thought: To paraphrase the great Bob Hoffman, just when you think that if the Big Data babblers were to generate one more ounce of bull**** the entire f****** solar system would explode, what do they do? Exceed expectations.

I am a mild mannered person, but if there is one thing that irks me, it is when I hear variations on the theme of “Data Warehousing is Big Data”, “Big data is in many ways an evolution of data warehousing” and “with Big Data you no longer need a Data Warehouse”.

Big Data is not Data Warehousing, it is not the evolution of Data Warehousing and it is not a sensible and coherent alternative to Data Warehousing. No matter what certain vendors will put in their marketing brochures or stick up their noses.

In spite of all of the high-visibility screw-ups that have carried the name of Data Warehousing, even when they were not Data Warehouse projects at all, the definition, strategy, benefits and success stories of data warehousing are known, they are in the public domain and they are tangible.

Data Warehousing is a practical, rational and coherent way of providing information needed for strategic and tactical option-formulation and decision-making.

Data Warehousing is a strategy driven, business oriented and technology based business process.

We stock Data Warehouses with data that, in one way or another, comes from internal and optional external sources, and from structured and optional unstructured data. The process of getting data from a data source to the target Data Warehouse, involves extraction, scrubbing, transformation and loading, ETL for short.

Data Warehousing’s defining characteristics are:

Subject Oriented: Operational databases, such as order processing and payroll databases and ERP databases, are organized around business processes or functional areas. These databases grew out of the applications they served. Thus, the data was relative to the order processing application or the payroll application. Data on a particular subject, such as products or employees, was maintained separately (and usually inconsistently) in a number of different databases. In contrast, a data warehouse is organized around subjects. This subject orientation presents the data in a much easier-to-understand format for end users and non-IT business analysts.

Integrated: Integration of data within a warehouse is accomplished by making the data consistent in format, naming and other aspects. Operational databases, for historic reasons, often have major inconsistencies in data representation. For example, a set of operational databases may represent “male” and “female” by using codes such as “m” and “f”, by “1” and “2”, or by “b” and “g”. Often, the inconsistencies are more complex and subtle. In a Data Warehouse, on the other hand, data is always maintained in a consistent fashion.

Time Variant: Data warehouses are time variant in the sense that they maintain both historical and (nearly) current data. Operational databases, in contrast, contain only the most current, up-to-date data values. Furthermore, they generally maintain this information for no more than a year (and often much less). In contrast, data warehouses contain data that is generally loaded from the operational databases daily, weekly, or monthly, which is then typically maintained for a period of 3 to 10 years. This is a major difference between the two types of environments.

Historical information is of high importance to decision makers, who often want to understand trends and relationships between data. For example, the product manager for a Liquefied Natural Gas soda drink may want to see the relationship between coupon promotions and sales. This is information that is almost impossible – and certainly in most cases not cost effective – to determine with an operational database.

Non-Volatile: Non-volatility means that after the data warehouse is loaded there are no changes, inserts, or deletes performed against the informational database. The Data Warehouse is, of course, first loaded with cleaned, integrated and transformed data that originated in the operational databases.

We build Data Warehouses iteratively, a piece or two at a time, and each iteration is primarily a result of business requirements, and not technological considerations.

Each iteration of a Data Warehouse is well bound and understood – small enough to be deliverable in a short iteration, and large enough to be significant.

Conversely, Big Data is characterised as being about:

Massive volumes: so great are they that mainstream relational products and technologies such as Oracle, DB2 and Teradata just can’t hack it, and

High variety: not only structured data, but also the whole range of digital data, and

High velocity: the speed at which data is generated, transmitted and received.

These are known as the three Vs of Big Data, and they are subject to significant and debilitating contradictions, even amongst the gurus of Big Data (as I have commented elsewhere: Contradictions of Big Data).

From time to time, Big Data pundits slam Data Warehousing for not being able to cope with the Big Data type hacking that they are apparently used to carrying out, but this is a mistake of those who fail to recognise a false Data Warehouse when they see one.

So let’s call these false flag Data Warehouse projects something else, such as Data Doghouses.

“Data Doghouse, meet Pig Data.”

Failed or failing Data Doghouses fail for the same reasons that Big Data projects will frequently fail. Both will almost invariably fail to deliver artefacts on time and to expectations; there will be failures to deliver value or even simply to return a break even in costs versus benefits; and of course, there will be failures to deliver any recognisable insight.

Failure happens in Data Doghousing (and quite possibly in Big Data as well) because there is a lack of coherent and cohesive arguments for embarking on such endeavours in the first place; a lack of real business drivers; and, a lack of sense and sensibility.

There is also a willing tendency to ignore the advice of people who warn against joining in the Big Data hubris. Why do some many ignore the ulterior motives of interested parties who are solely engaged in riding on the faddish Big Data bandwagon to maximise the revenue they can milk off punters? Why do we entertain pundits and charlatans who ‘big up’ Big Data whilst simultaneously cultivating an ignorance of data architecture, data management and business realities?

Some people say that the main difference between Big Data and Data Warehousing is that Big Data is technology, and Data Warehousing is architecture.

Now, whilst I totally respect the views of the father of Data Warehousing himself, I also think that he was being far too kind to the Big Data technology camp. However, of course, that is Bill’s choice.

Let me put it this way, if Oracle gave me the code for Oracle 3, I could add 256 bit support, parallel processing and give it an interface makeover, and it would be 1000 times better than any Big Data technology currently in the market (and that version of Oracle is from about 1983).

Therefore, Data Warehousing has no serious competing paragon. Data Warehousing is a real architecture, it has real process methodologies, it is tried and proven, it has success stories that are no secrets, and these stories include details of data, applications and the names of the companies and people involved, and we can point at tangible benefits realised. It’s clear, it’s simple and it’s transparent.

Just like Big Data, right?

Well, no.

See what I mean?

Therefore, the next time someone says to you that Big Data will replace Data Warehousing or that Data Warehousing is Big Data, or any variations on that sort of ‘stupidity’ theme, you can now tell them to take a hike, in the confidence that you are on the side of reason.

Many thanks for reading.

More perspectives on Big Data

Aligning Big Data: http://www.linkedin.com/pulse/aligning-big-data-martyn-jones

Big Data and the Analytics Data Store: http://www.linkedin.com/pulse/big-data-analytics-store-martyn-jones

A Modern Manager’s Guide to Big Data:http://www.linkedin.com/pulse/managers-guide-big-data-context-martyn-jones

Core Statistics coexisting with Data Warehousing

Accomodating Big Data

And a big thank you to Bill Inmon (the father of Data Warehousing and of DW 2.0)

Contradictions of Big Data

01 Sun Mar 2015

Posted by Martyn Jones in Ask Martyn, Big Data, Consider this

≈ 1 Comment

Tags

Big Data, data management, Good Strat, Good Strategy, Martyn Jones, Martyn Richard Jones


What we’ve been told

We’ve been told that Big Data is the greatest thing since sliced bread, and that its major characteristics are massive volumes (so great are they that mainstream relational products and technologies such as Oracle, DB2 and Teradata just can’t hack it), high variety (not only structured data, but also the whole range of digital data), and high velocity (the speed at which data is generated and transmitted). Also, from time to time, much to the chagrin of some Big Data disciples, a whole slew of new identifying Vs are produced, touted and then dismissed (check out my LinkedIn Pulse article on Big Data and the Vs).

So, beware. Things in Big Data may not be as they may seem.

It’s not about big

I have been waging an uphill battle against the nonsensical and unsubstantiated idea that more data is better data, but now this view is getting some additional support, and from some surprising corners.

In a recent blog piece on IBM’s Big Data and Analytics Hub (Big data: Think Smarter, not bigger), Bernard Marr wrote that “the truth is, it isn’t how big your data is, it’s what you do with it that matters!”

Elsewhere, SAS echoed similar sentiments on their web site: “The real issue is not that you are acquiring large amounts of data. It’s what you do with the data that counts.”

Can we call that ‘strike one’ for Big Data Vs?

It’s not about variety

It is claimed that 20% of digital data is structured, it is based on the problematic suggestion that structured data is uniquely relational. It is also claimed that unstructured data includes CSV files and XML data, and this makes up far more than the 20% of the data generated. But this definition is simply wrong.

If anything, CSV data is structured, and XML data is highly structured, and it’s typically regular ASCII data. So it does not add variety, even though it is not structured in the ways that some people might expect, especially if that someone lacks the required knowledge and experience. Simply stated, CSV data is structured, it’s just that it lacks rich metadata, but that doesn’t make it unstructured.

“But”, I hear you say “what about all the non-textual data such as multi-media, and what about the masses of unstructured textual data?”

Take it from me, most businesses will not be basing their business strategies on the analysis of a glut of selfies, home videos of cute kittens, or the complete works of William Shakespeare or Dan Brown. Almost all business analysis will continue to be carried out on structured data obtained primarily from internal operational systems and external structured data providers.

Strike two! Third time lucky?

It’s not even about velocity

So, if we accept that Big Data isn’t really about the data volumes or data variety that leaves us with velocity, right? Well no, because if it isn’t about record breaking VLDBor significant data variety, then for most commercial businesses the management of data velocity becomes either less of an issue or just is no issue. The fact that some software vendors and IT service suppliers set up this ‘straw man’ argument and then knock it down with the ‘amazing powers’ of their products and services, is quite another matter.

Strike three, and counting.

It’s not about the manageability of Big Data

We have been told and time again that the major difference between a data scientist and professional statistician is that the ‘scientists’ know how to cope very well with massive volumes, varieties and velocities of data. Now it turns out that this is also questionable.

According to Bob Violino writing in Information Management (Messy Big Data Overwhelms Data Scientists – 20 February 2015) “Data scientists see messy, disorganized data as a major hurdle preventing them from doing what they find most interesting in their jobs”. So, when it comes to data quality and structure the ‘scientists’ don’t really have an advantage over professional statisticians.

Last year Thomas C. Redman writing in the Harvard Business Review (Data’s Credibility Problem) noted that when Big Data is unreliable “managers quickly lose faith” and “and fall back on their intuition to make decisions, steer their companies, and implement strategy” and when this happens there is a propensity to reject potentially “important, counterintuitive implications that emerge from big data analyses.”

Strike four?

The new analytics aren’t new

Data science and Big Data analytics are the new kids on the block, aren’t they?

Well, here are some real life scenarios.

A major banking equipment supplier: A lot of banking equipment is hybrid analogic-digital, a simple example of this would be a photo copier or a physical document processing device. One major supplier decided to incorporate the capture of sensor data produced by their devices to predict failure and problems. Predictive preventive maintenance rules are created and corroborated using the data generated by sensors on each customer device, and these rules then get incorporated into the devices logic.

A major IT vendor: What happens when you create an intersection and convergence between technologies, techniques and method from areas of mainstream IT, data architecture and management, statistics (quantitative and qualitative analytics) and data visualisation, artificial intelligence/machine learning and knowledge management? This is precisely what one of the main European IT vendors did, and the idea proved to be quite attractive to customers, prospects and investors.

A major integrated circuit supplier: The testing of ICs at the ‘fabs’ (manufacturing plants) generates serious amount of data. This data is used to detect errors in the IC manufacturing process, it is captured and analysed in as near real-time as possible, which is necessary due to the costly nature of over-running the production of faulty ICs. To get around this problem the company uses a combination of fast data capture, transformation and loading of data into a data analytics area to ensure early and precise problem detection.

All Big Data Analytics success stories?

The first happened in 1989, the second in 1993 and the third in 2001. Yes, Big Data and Big Data analytics are sort of newish.

Strike five.

The science is frequently not very scientific

What is science?

According to Vasant Dhar of the Stern School of Business (Data Science and Prediction), Jeff Leek (The key word in “Data Science” is not Data, it is Science), and repeated on Wikipedia, “In general terms, data science is the extraction of knowledge from data”. Well, excuse me if I beg to differ. I have seen data scientists at work, and the word science doesn’t actually jump out and grab you. It’s difficult to make the connection, just as it is to accurately connect some popular science magazines with fundamental scientific research.

If a professional and qualified statistician wants to label themselves a data scientist then I have no issue with that, it’s their problem, but I am not willing to lend credibility to the term ‘data scientist’ when it is merely an interesting job title, with at most a tenuous connection to the actual role, and one that is liberally applied, with the almost customary largesse of IT, to creative code hackers and business-averse dabblers in data.

As Hazelcast VP Miko Matsumura suggested in Data Science is Dead “… put “Data Scientist” on your resume. It may get you additional calls from recruiters, and maybe even a spiffy new job, where you’ll be the King or Queen of a rotting whale-carcass of data” and ” Don’t be the data scientist tasked with the crime-scene cleanup of most companies’ “Big Data”—be the developer, programmer, or entrepreneur who can think, code, and create the future.”

Strike six.

And the value is questionable

DATA: “Data is a super-class of a modern representation of an arcane symbology.” – Anon

If I had a dollar for every time I heard someone claim that data has intrinsic positive value then I would be as wealthy as Warren Buffet.

If I have said it once, I have said it a hundred time. In order for data to be more than an operational necessity it requires context.

Providing valid data with valid context turns that data into information.

Data can be relevant and data can be irrelevant. That relevance or irrelevance of data may be permanent or temporary, continuous or episodic, qualitative or quantitative.

Some data is meaningless, and there are cases whereby nobody can remember why it was collected or what purpose it serves.

Taking all this into account we can ask the deadly pragmatic question: what value does this data have? Which is sometimes answered with a pertinent ‘no value whatsoever’.

Strike seven.

So what is it really about?

It is said that Big Data is changing the world, but for all intents and purposes, and shamed by previous Big Data excesses, some people are rapidly changing the definitions and parameters of Big Data, and to position it as being more tangible and down-to-earth, whilst moving it away from its position as an overhyped and dead-ended liability.

Big Data is a dopey term, applied necessarily ambiguously to a surfeit of tenuously connected vagaries, and its time has come and gone. So, let’s drop the Big Data moniker, and embrace the fact that data is data, and long live ‘All Data’, yes, all digital data. Let’s consider all data and for what it’s worth to the business, and not for what some chatterers reckon its value is – having as they do, little or no insight into the businesses to which they refer, or of the data in that these businesses possess.

So, when push comes to shove, is Big Data really about high volumes, high velocity and high variety, or is it in fact about much noise, too much pomposity and abundant similarity leading to unnecessary high anxiety?

Thanks very much for reading.

Big Data in Question – Again

01 Sun Mar 2015

Posted by Martyn Jones in All Data, Big Data, Consider this

≈ Leave a comment

Tags

All Data, Big Data, data management, Good Strat, good strat blog, Good Strategy, Martyn Jones, Martyn Richard Jones


Big Data is now an inhospitable and unhealthy land inhabited by those who, through accident or design, deceive naïve and sentimental bystanders and those who are willingly mislead.

When all of this Big Data malarkey started it was sort of funny, humorous and occasional witty, especially in the affected, bizarre and the frequently uninhibited ways that freshly-minted self-appointed gurus and experts would “big it up”

Doctor Freud would have had a field day with all of that, being as it was, and for that matter still is, a postmodern mishmash of Riefenstahl, Freddy Mercury and Monty Python on steroids. However, after that extended, operatic and high-camp hiatus it all went downhill.

The Big Data scene is fast becoming an outrageous and brash festival of deception, disinformation and obliviousness. Which is a pity, because it does the industry no good whatsoever.

It is telling that Big Data evangelists, gurus and assorted sycophants cannot even define Big Data adequately, never mind discuss (or for that matter, point at) tangible success stories, without falling into contradictions on all of the key defining characteristics of volume, variety and velocity, and resorting to crude debating devices to avoid or finesse the concerns and the questions.

Almost every morning I check out the industry news, and almost invariably, it comes with new mind-boggling examples of Big Data nonsense.

However, it isn’t always nonsense for nonsense’s sake, there are agendas, there are rational explanations why Big Data has become at the same time, one of the most hyped up fads in the history of IT, and one that its supporters find so difficult to actually explain and justify, in any reasonable sort of way.

Therefore, when it comes to Big Data, beyond the surfeit of platitudes, clichés, bluff and bluster, the only thing in play are the interests of industry, the patrons, the courtesans and their entourage of the innocent and the beguiled.

One of the biggest deceptions in Big Data is in the misleadingly named ‘success stories’. The thing is that most of these success stories that I have ever read have been:

  • So vague that it’s difficult to know how success is being defined never mind reached.
  • So secretive and obtuse is the avoidance of naming names, locations and other relevant Big Data references that it’s impossible to corroborate if these claims are actually true or not. Disclaimer: I have worked for some of the biggest IT vendors, and in senior roles, and I know what is behind comments such as “the Big Data project is a success, although the client name and project are confidential” and “it’s delivering such major competitive advantages that we are obliged to keep it under wraps”.
  • Stories stolen from elsewhere, such as from Data Warehousing, Business Intelligence, VLDB or Business Application projects.
  • Borderline fantasies and badly contrived technology fan fiction.

However, it doesn’t stop there.

One of the clearest examples of the questionable nature of Big Data evangelism is when it is used to piggyback Big Data hype on simple, tangible and immediately recognisable artefacts or applications that have little in common with Big Data.

This is an extreme illustration, but it works like this: “iPhones are commercially successful, iPhones are part of Big Data, and therefore Big Data is commercially successful.”

As if the mere conjuring up of association, affinity and proximity will convince people of the great and growing value of Big Data.

What I am also referring to are publicity pieces that may as well have been titled:

  • Smith, Galbraith, Mies, Keynes, Homer SImpson and the economic justification of Big Data
  • Lovelace, Babbage, von Neumann, Eckert, Davies, Codd, Knuth, Naur and the technological underpinnings of Big Data
  • Einstein, Freud, Edison, Faraday, Recorde and the intellectual structure of Big Data
  • Socrates, Kant, Hegel, Marx , Adorno and the philosophical correctness of Big Data
  • Great quotes about Big Data, from the Cambrian era to the postmodern époque
  • Great jokes about Big Data, from Mel Brooks to Steve Martin
  • Sportspeople and Big Data, from Lottie Dodd and Babe Ruth to Rafa Nadal and CR7
  • Industry support of Big Data, from Henry Ford to Neutron Jack

Do you recognise similarities?

It’s no big deal, just the use of unreliable, misleading and inappropriate fallacies, dressed up as cute, plausible and accessible collateral. People may think that such things are clever and witty, but they aren’t, it’s just misleading.

Let’s continue with something simple.

Evasion is, in ethics, an act that deceives by stating a true statement that is immaterial or leads to a false deduction. For example, citing events, persons or anecdotes from the history of IT to justify the supposed or imaginary value of Big Data. This is close to the notion of a non sequitur, which of course is an argument, the conclusions from which do not follow from its premise. It falls short of being full-on sophistry, purely because the simplistic, puerile and superficial arguments put forward in favour of Big Data do not match those of the true sophist who seeks to reason with clever but fallacious and deceptive arguments. Too many of the Big Data arguments are fallacious and deceptive, but no one, equipped with a reasonable capacity for critical thinking, should take such ‘arguments’ as valid.

Hold this thought: Big Data hype is a viper’s nest of logical fallacies, white lies and disinformation.

Just when I think things could not get any weirder, they do, and Big Data ceiling of hyperbole rises even higher, up to the rarer atmosphere of extreme tendentiousness.

There is a growing mass of Big Data hoop-la, hyperbole and flim flam that exceeds all previously bounds of overstatement, solecism and confabulation. This is where the real volumes, varieties and velocities are in Big Data; in hokie.

We live, as Oscar Wilde said in his day, in and age of surfaces. Yes, superficiality, puerility and short-termism are the competing orders of the day. However, I am still amazed – and maybe wrongly so – by what ostensibly professional, experienced and knowledgeable people are willing, able and prepared to accept, especially when it comes to Big Data flim flam sauce.

Here are some examples of the nonsense about Big Data that is taken as gospel by ‘adults’:

Data Warehousing is part of Big Data: No comment.

Big Data will replace Enterprise Data Warehousing: People can’t even explain the features and benefits of Big Data. I try it make it as easy as possible, ‘if you can’t say it, point to it’. But, seriously, people can’t even relate tangible and credible Big Data success stories, never mind show how it will replace Enterprise Data Warehousing, whether that’s the Inmon or Kimball flavour, take your pick.

Everyone and every organisation can benefit from Big Data: If people can’t explain this, and they don’t in terms of tangible benefits, then the claim should remain questionable.

Data Scientists will replace Statisticians: Why is that so? It is claimed that Data Scientists are uniquely equipped to handle massive volumes, varieties and velocities of data – well, as it turns out, this isn’t certain either.

Big Data is in its infancy: I think we may be confusing infancy with lack of real traction, and of time and place utility.

You cannot be serious: Just what are people talking about here? I have read vague, naïve and ill-informed pieces about data management, data architecture, data warehousing, reporting, business intelligence and a plethora of etcetera that have been passed off as observations and commentary on Big Data. So, what makes people recycle hackneyed, misleading and badly conceptualised ‘content’?

In the commentary on one of Bernard Marr’s pieces on LinkedIn (a professional networking site) I observed that no one can adequately explain what Big Data is without falling into contradictions and fancies, and no one seems to be capable or willing to provide tangible success stories.

Bernard responded to this comment by pointing out “the reason for that is that Big Data means different things to different people.”

Fair enough. It’s an explanation.

That said, I have always had more than a tenuous dislike of postmodern thinking, in fact most things ‘postmodern’. Call me old fashioned, jaded or cynical, but to me, the idea that everything can mean anything is an aberration that I prefer to leave to others.

I am at a loss to explain why so many reasonable people are willing to embrace the hype surrounding Big Data and Big Data Analytics, including the attendant surfeit of nonsense, incongruences and contradictions, and from my perspective, it defies reason and good sense.

Therefore, I will just end again with a fabulous quote from Ben Goldacre:

“You cannot reason people out of a position that they did not reason themselves into”.

Many thanks for reading.

Contradictions of Big Data – Short

01 Sun Mar 2015

Posted by Martyn Jones in Big Data, Consider this, Good Strat, Good Strategy, Martyn Jones, Martyn Richard Jones

≈ Leave a comment

Tags

Big Data, data management, Good Strat, Good Strategy, Martyn Jones, Martyn Richard Jones


Please note: This is an edited version of a previous piece with a similar name, but focusing solely on the three main Vs of Big Data.

What we’ve been told

We’ve been told that business Big Data is the greatest thing since sliced bread, and that its major characteristics are:

  • massive volumes – so great are they that mainstream relational products and technologies such as Oracle, DB2 and Teradata just can’t hack it, and
  • high variety – not only structured data, but also the whole range of digital data, and
  • high velocity – the speed at which data is generated, transmitted and received

Which is a simple and straightforward means of classification. Big Data is about massive volumes, high variety and high velocity. Right?

It’s not about big

I have never bought into the idea that more data is necessarily better data, or that it provides better focus or leads to increased insight, in fact I have been quite vocal with my contrarian opinion, but now this view is getting some additional support, and from some surprising corners.

In a recent blog piece on IBM’s Big Data and Analytics Hub (Big data: Think Smarter, not bigger), Bernard Marr wrote that “the truth is, it isn’t how big your data is, it’s what you do with it that matters!”

Over at Fierce Big Data it was Pam Baker who stated that “the term big data is unfortunate because it’s really not about the size of the data”. (Big data is not about petabytes, but complex computing).

Elsewhere, SAS echoed similar sentiments on their web site: “The real issue is not that you are acquiring large amounts of data. It’s what you do with the data that counts.”

Well, apparently Big Data isn’t about “massive volumes” of data.

Strike 1!

It’s not about variety

It is claimed that 20% of digital data is structured, it is based on the problematic suggestion that structured data is uniquely relational.

It is also said that unstructured data includes CSV files and XML data, and this makes up far more than the 20% of the data generated. But this definition is wrong.

If anything, CSV data is structured, and XML data is highly structured, and it’s typically regular ASCII data. So there it does not add variety, even though it is not structured in the ways that some someone might expect, especially if that someone lacks the required knowledge and experience. Simply stated, CSV data is structured, it’s just that it lacks rich metadata, but that doesn’t make it unstructured.

“But”, I hear you say “what about all the non-textual data such as multi-media, and what about the masses of unstructured textual data?”

Take it from me, most businesses will not be basing their business strategies on the analysis of a glut of selfies, juvenile twittering, home videos of cute kittens, or the complete works of William Shakespeare. Almost all business analysis (whether done by a professional statistician or a data scientist) will continue to be carried out using structured data obtained primarily from internal operational systems and external structured data providers.

Variety, Sir? No problem.

Strike two!

It’s not even about velocity

So, if we accept that Big Data isn’t really about the massive data volumes or high data variety then that leaves us with velocity. Because if it isn’t about record breaking VLDB or significant data variety, then for most commercial businesses the management of data velocity becomes either less of an issue or just is no issue.

Even in some extreme circumstances, one can explore the suggestion that data sampling can remove issues with data volume as well as velocity.

However, the fact that some software vendors and IT service suppliers set up this‘straw man’ velocity argument and then knock it down with the ‘amazing powers’ of their products and services, is quite another matter.

So, is it really about velocity?

Strike three!

So what is it really about?

Big Data is a dopey term, applied necessarily ambiguously to a surfeit of tenuously connected vagaries, and its time has come and gone. Let’s dump the Big Data moniker, and the 3 Vs along with it, and embrace the fact that data is data, there will always be more of it.

So, let’s consider ‘all data’ and principally for its time and place utility.

If there is something that you are not sure about or have questions with then please leave a comment below or email me.

Thanks very much for reading.

Consider this: Big Data and the Pot of Tea

17 Tue Feb 2015

Posted by Martyn Jones in Big Data, Consider this, Good Strat, Good Strategy, Martyn Jones, Martyn Richard Jones, Strategy

≈ Leave a comment

Tags

Analytics, Big Data, data management, Good Strat, Good Strategy, Martyn Jones, Martyn Richard Jones


To begin at the beginning

Hold this thought: Big Data is King.

Is there just nothing that Big Data isn’t capable of fixing? From terrorism, world hunger, Ebola, HIV, fraud, money laundering and hiring the ‘right’ people through to winning the lottery, curing hangovers, arranging entrapment and finding the love of your life. Big Data is King. Continue reading →

The amazing world of Fred’s Big Data

15 Sun Feb 2015

Posted by Martyn Jones in Big Data, Consider this

≈ Leave a comment

Tags

Big Data, data management, Good Strat, Good Strategy, information management, knowledge management, Martyn Jones, Martyn Richard Jones


Hold this thought: There are real golden nuggets of data that many organisations are oblivious to. But first let’s look at business process management. Continue reading →

Big Data Will Save the World

12 Thu Feb 2015

Posted by Martyn Jones in Big Data, Good Strat, Good Strategy, Martyn Jones, Martyn Richard Jones

≈ Leave a comment

Tags

Big Data, Good Strat, Good Strategy, Martyn Jones, Martyn Richard Jones


Good morning fellow consumers; here’s a pop quiz question: What does Big Data have in common with Robitussin? Think about, take your time.

Okay, times up!

Robitussin is a legal pharmaceutical product commonly associated with coughs, colds and flu combinations. Continue reading →

The Faustian side of IT – Part 1

12 Thu Feb 2015

Posted by Martyn Jones in Good Strat, goodstartegy, Martyn Jones

≈ Leave a comment

Tags

Big Data, Good Strat, Good Strategy, Martyn Jones, Martyn Richard Jones


It’s no wonder that truth is stranger than fiction. Fiction has to make sense.
Mark Twain

It’s Friday morning in London’s trendy Canary Wharf, and I have been asked to facilitate a local meeting of the Digital Violence and Dogma Victims Group, the self-help recovery chain for those who have fallen foul of the pernicious and debilitating effects of IT dogma, organisational autism and insider thuggery and blackmail.

There are twelve of us in the old church hall. We sit in a circle, to facilitate communication. After a more formal welcome and brief introduction the floor is opened up for people to talk about whatever they want to talk about. There is silence. This is normal. There are a few new faces.

“Pantxo!” I look across at Pantxo; he is staring out the window at the falling rain. He can usually talk the legs off a giraffe, but today he is having none of it. Sensing that things are not going too well, I enter into my routine of floridly and inanely relating well-worn anecdotes from the distant annals of IT history.

As I am entering my tenth lap of the track of tedium, one of the new members picks up enough courage to chime in, first nervously and then with the increasing confidence of someone who knows exactly what they are talking about and precisely what they are going to say.

“Hello. My name is Crème”. A woman in a blue adidas tracksuit looks around the room.

“Yes. My name is Crème Brûlée; you may well have heard of it from twitter, the tabloids and the TV… oh, and the novel Absolute Beginners… I used to be the CIO of a major household name.”

She pauses and looks into the middle distance, searching for the truth, tip toeing around the pain.

“This is a bit embarrassing – awkward maybe would be a better word – but what I want to unburden upon you all today is the story of how I outsourced my Data Warehouse, my Business Intelligence, my Big Data, my MDM, my CRM, my family and my life”.

She takes a deep breath and continues; making a point of looking at each of her fellow members in turn as she does so.

“About five summers ago, I feeling a bit lost, which was unusual for me, a strange and novel experience, so I decided that I really needed to do something to turbo-charge my career prospects and to get things moving faster in my part of the organisation. I wanted to excel, and I wanted to be seen doing so, by the right people, and recognised as such.”

“In the spring of that year I had been to a management conference with some of our senior IT management team, some of whom are also here today. Okay, I won’t single out any one of you, because you know who you are.”

“As part of the week-long conference we were wined and dined, stroked and cajoled, flattered and sweet talked by a whole entourage of sales execs from the technology and service providers. They were telling us that the future was in outsourcing and offshoring as much as we could, yes even Big Data and Data Warehousing and Analytics, and they were bewitching us with stories of future successes, of IT paradise and professional nirvana. We in turn wanted to believe, needed to believe, desired to believe. All of this was reinforced by the so called independent industry analysts who insisted, in their agnostic way, that we should seize the moment, with courage, determination and illusion.”

“When I got back to the ranch my mind became occupied with other things, but I didn’t entirely forget the compelling messages that I had brought away with me from the conference.”

“Nothing happened for a couple of months until, one day and out of the blue, things came to a head.”

“We had recently acquired a media news and entertainments business – Media Macaroni International, and we were planning on integrating their general ledger into the corporate IT landscape. One morning I received a call from the CIO of the newly acquired company, inviting me to their site for a meet and greet event.”

“So I moseyed on down to Tinsel Town and got a briefing from not only the CIO, but the full board of directors of Media Macaroni, the ‘hasta la pasta’ of Big Data Analytics ad-hoc performance alignment.”

“To cut a long story short, they basically put me on the spot. Either I integrate the entire Data Warehousing, MIS, Big Data, Analytics and MDM across the expanded corporate body in 9 to 15 months, or we would have serious problems of convergence and market credibility. The message couldn’t have been clearer. Either I got our act together and made this acquisition work, or what looked like a humongous hot potato could land in my lap anytime soon. It was a career changing risk that I needed to address.”

“I told the directors there and then that the mission was going to be incredibly difficult to fulfil. However, the mood quickly changed.”

“Their CIO looks across the table and tells me that he can help me out of my hole. My hole? What the freak! You see, we have employed a service company that does most of our IT work for us, and according to us at Media Macaroni they are simply the bee’s knees, the best thing since chopped liver on rye, the biz.”

“So ‘who are these guys’, I ask. And after a brief hiatus that seemed to last forever, back came the ominous response: The Taffia Connection.”

To be continued…

Many thanks for reading.

Channel: #IT #BigData

As always, please share your questions, views and criticisms on this piece using the comment box below. I frequently write about strategy, organisational leadership and information technology topics, trends and tendencies. You are more than welcome to keep up with my posts by clicking the ‘Follow’ link and perhaps even send me aLinkedIn invite. Also feel free to connect via Twitter, Facebook and the Cambriano Energy website.


File under: Good Strat, Good Strategy, Martyn Richard Jones, Martyn Jones, Cambriano Energy, Iniciativa Consulting, Iniciativa para Data Warehouse, Tiki Taka Pro

← Older posts
Newer posts →

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 640 other subscribers.

Top posts

  • X Is Dying In Europe: Here's Why - Revisited - 2026/02/16
  • X Is Dying In Europe: Here's Why
  • Understanding the Data Warehouse Dilemma - 2026/02/07
  • The Comeback of Ontology in AI: Why It Matters - 2026/01/21
  • Fixing the Data Warehouse - 2026/02/10
  • Navigating Democracy: Lessons from Tony Benn's Perspective
  • The Risks of Using Databricks for Data Warehousing
  • Building the Data Logistics Hub: The Strategy – 2026/02/14 - Part 2
  • The World's Best Data Quotes... Including Big Data quotes
  • An Open Letter to Mansoor Hussain Laghari

Recent Comments

Martyn Jones's avatarMartyn Jones on The BBC in Crisis: Navigating…
Martyn Jones's avatarMartyn Jones on The BBC in Crisis: Navigating…
Martyn de Tours's avatarMartyn de Tours on The Perpetual Victim: How Prof…
Tiffany's avatarTiffany on Consider this: Data Made …
Unknown's avatarThe Case for a Globa… on REVEALING WEALTH: USING BIG DA…
Follow GOOD STRATEGY on WordPress.com

Meta

  • Create account
  • Log in
  • Entries feed
  • Comments feed
  • WordPress.com

Names in the cloud

All Data Ask Martyn awareness Big Data Big Data 7s Big Data Analytics Business Intelligence business strategy Consider this dark data data architecture Data governance Data Lake data management data science Data Supply Framework Data Warehouse Data Warehousing Good Strat goodstrat Good Strategy Inform, educate and entertain. IT strategy Martyn Jones Martyn Richard Jones pig data Politics Strategy The Amazing Big Data Challenge The Big Data Contrarians

Recent articles

  • X Is Dying In Europe: Here’s Why – Revisited – 2026/02/16 Feb 16, 2026
  • The Promised Banality of Evil – Revisited Feb 16, 2026
  • Grok, What Do You Make of Martyn Rhisiart Jones’ Take on Big Data? Feb 15, 2026
  • Consider This: In Praise of Shadow-Apps – 2026/02/16 Feb 15, 2026
  • Building the Data Logistics Hub: Pieces and Parts – 2026/02/15 – Part 3 Feb 14, 2026
  • Building the Data Logistics Hub: The Strategy – 2026/02/14 – Part 2 Feb 14, 2026
  • Celtic Mysticism Meets Valentine’s Day Feb 13, 2026

Hours & Info

Spain
+34 692 376 698
martyn.jones@martyn.es
Lunch: 13:30pm - 14:30pm
Dinner: M-Th 20:00pm - 21:00pm, Fri-Sat:21:00pm - 22:00pm

The Stats

  • 118,966 hits

Meta

  • Create account
  • Log in
  • Entries feed
  • Comments feed
  • WordPress.com
Log in

Hours & Info

Martyn Richard Jones
Madrid, Spain
+34 692 376 698
martyn.jones@martyn.es
10:00 - 17:00
Follow GOOD STRATEGY on WordPress.com
  • X Is Dying In Europe: Here’s Why – Revisited – 2026/02/16
  • The Promised Banality of Evil – Revisited
  • Grok, What Do You Make of Martyn Rhisiart Jones’ Take on Big Data?
  • Consider This: In Praise of Shadow-Apps – 2026/02/16
  • Building the Data Logistics Hub: Pieces and Parts – 2026/02/15 – Part 3

Top Good Strat Posts & Pages

  • X Is Dying In Europe: Here's Why - Revisited - 2026/02/16
  • X Is Dying In Europe: Here's Why
  • Understanding the Data Warehouse Dilemma - 2026/02/07
  • Good Strategy: With Martyn Rhisiart Jones, Sir Afilonius Rex and Lila de Alba.
  • The Comeback of Ontology in AI: Why It Matters - 2026/01/21
  • Fixing the Data Warehouse - 2026/02/10
  • Navigating Democracy: Lessons from Tony Benn's Perspective
  • The Risks of Using Databricks for Data Warehousing
  • Building the Data Logistics Hub: The Strategy – 2026/02/14 - Part 2
  • The World's Best Data Quotes... Including Big Data quotes

Good strat tag cloud

AI All Data Analytics Artificial Intelligence Behavioural Economics BI Big Data bigdata blog books bullshit Business business analysis Business Enablement business intelligence Business Management business strategy chatgpt cloud Consider this data data integration data management data science Data Warehouse Data Warehousing Demagogism digital-marketing Dogma Donald Trump enterprise data warehousing espanol EU fe fiction gaza goodstart good start Good Strat goodstrat Good Strategy hamas history ia information Information and Technology information management Information Technology israel IT Strategy jesus knowledge leadership llm machine learning Marketing Martyn Jones Martyn Richard Jones News Offshoring Organisational Autism palestine Philosophy poesia Poetry Politics Russia Spain statistics Strategy technology trump USA Wales writing

Categories

  • accountability
  • advertising
  • agile
  • agile way of working
  • agile@scale
  • AI
  • All Data
  • Analytics
  • anthropology
  • Architecture
  • Artificial Intelligence
  • Ask Martyn
  • Assets
  • awareness
  • bad strategy
  • Banking
  • behaviour
  • Best principles
  • Big Data
  • Big Data 7s
  • Big Data Analytics
  • blockchain
  • Books with influence
  • Brexit
  • BS
  • business
  • Business Intelligence
  • business strategy
  • Cambriano
  • Cambridge Analytica
  • China
  • Climate Change
  • Cloud
  • code of conduct
  • Commercial Analytics
  • community
  • Condiser this
  • Conservative Party
  • consider
  • Consider this
  • Consultation
  • Creativity
  • Culture
  • dark data
  • data
  • data architecture
  • Data governance
  • data hub
  • Data Lake
  • data management
  • Data Mart
  • data mesh
  • data science
  • Data Supply Framework
  • Data Warehouse
  • Data Warehousing
  • deceit
  • deep learning
  • Democracy
  • digital transformation
  • Diplomacy
  • disinformation
  • Dogma
  • Duties
  • DW 3.0
  • ECM
  • Economics
  • EDW
  • England
  • enterprise content management
  • ethics
  • EU
  • Europe
  • European Union
  • Excellence
  • Excerpt
  • Executive
  • Extract
  • Federalism
  • films
  • Financial Industry
  • fraud
  • Freedoms
  • Globalisation
  • good start
  • Good Strat
  • Good Strategy
  • Good Strategy Radio
  • goodstart
  • goodstartegy
  • goodstrat
  • goostart
  • governance
  • hadoop
  • hdfs
  • HR
  • humour
  • India
  • influencers
  • Inform, educate and entertain.
  • informatio Supply Framework
  • information
  • Information Management
  • Information Supply Frameowrk
  • Information Supply Framework
  • Infotrends
  • Inmon
  • instruments
  • IoT
  • IT Circus
  • IT fraud
  • IT strategy
  • IT World
  • iterations
  • java
  • Knowledge
  • knowledge management
  • Labour Party
  • leadership
  • Leadership 7s
  • life
  • listening
  • literature
  • Love
  • LSE
  • machine learning
  • Management
  • market forces
  • Marketing
  • Marty does
  • Martyn does
  • Martyn Jones
  • Martyn Richard Jones
  • Masterclass
  • media
  • Memory lane
  • Methodology
  • nationalism
  • nine competitive forces
  • no limits
  • Northern Ireland
  • obituary
  • Obligations
  • offshore
  • Offshoring
  • operational
  • Outsourcing
  • Oxford
  • pain
  • Parliament
  • Peeves
  • Personal Integrity Key
  • Philosophy
  • pig data
  • PIK
  • PIR
  • Plaid Cymru
  • Planning
  • poem
  • poems
  • Poetry
  • Polemic
  • political science
  • Politics
  • pomo
  • postmodern
  • POTUS
  • PPE
  • Process
  • Professional Networking
  • professionalism
  • project management
  • Project to Excel
  • prose
  • public
  • Public Integrity Record
  • Quiz
  • Rant
  • Referendum
  • Remain
  • RIghts
  • Risk
  • Rivalry
  • romance
  • Russia
  • Ruth Davidson
  • Sales
  • satire
  • Scotland
  • Scottish National Party
  • scrum
  • sentiment analysis
  • SMILES
  • Snippet
  • SNP
  • Social
  • Social Media
  • Sociology
  • Spain
  • spoof
  • statistics
  • Stories
  • Strategy
  • structured intellectual capital
  • supply chain management
  • tactics
  • Tax avoidance
  • Tax evasion
  • TEAM
  • technology
  • The Amazing Big Data Challenge
  • The Big Data Contrarians
  • The Greens
  • The Guardian
  • The hidden wealth of nations
  • Trade
  • UK
  • Uncategorized
  • United Kingdom
  • USA
  • Valentine
  • Value
  • Wales
  • wisdom

Blog at WordPress.com.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
  • Subscribe Subscribed
    • GOOD STRATEGY
    • Join 138 other subscribers.
    • Already have a WordPress.com account? Log in now.
    • GOOD STRATEGY
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar