• Home
  • About
  • The Good Strategy Blog
  • Strategy
    • Data Warehousing
    • Ask Martyn
  • MARTYN
    • MARTYN’S MUSIC
    • Must-Read Books from Martyn
    • PODCASTS
    • MARTYN.ES

GOOD STRATEGY

~ DATA, INFORMATION & KNOWLEDGE

GOOD STRATEGY

Category Archives: DW 3.0

Requirements – Building the Data Warehouse – Part II

01 Sun Feb 2026

Posted by Martyn Jones in Data Mart, Data Supply Framework, Data Warehouse, Data Warehousing, DW 3.0, EDW, Inform, educate and entertain., Masterclass

≈ Leave a comment

Tags

Masterclass


The Good Strat Masterclasses

Masterclass Mode Engaged

Martyn Rhisiart Jones

Madrid, Sunday 1st February 2026

PART I

PART II

Continue reading →

A data superhero is something to be

02 Wed Mar 2016

Posted by Martyn Jones in Consider this, Data Supply Framework, Data Warehouse, Data Warehousing, DW 3.0, EDW, Excellence, Good Strat, Good Strategy, Inform, educate and entertain., Information Management, Information Supply Frameowrk, Knowledge, leadership, Methodology, Professional Networking, The Big Data Contrarians

≈ Leave a comment


SuperHeroA data warehousing superhero is something to be

Not all that glitters is Big Data, and Big Data has a long way to go before it can deliver anything like the same satisfying results, tangible benefits and organisational agility that a properly implemented Inmon Enterprise Data Warehouse can provide.

Therefore, I have a question for you.

Continue reading →

In the Beginning was the Big Data Plan

23 Tue Feb 2016

Posted by Martyn Jones in Big Data, Big Data 7s, Big Data Analytics, Data governance, Data Lake, data science, Data Warehouse, Dogma, DW 3.0, Inform, educate and entertain., Information Management, Information Supply Frameowrk, Infotrends, Inmon, sentiment analysis

≈ Leave a comment


Lucas_Cranach_d._Ä._035

In the beginning was the Big Iron, the Big Data, and the Big Data Plan.

And then came the Big Data Assumptions.

And the Big Data Assumptions were without form.

And the Big Data Plan was without substance.

And the Big Iron was without movement.

And the Big Data was without velocity, variety and volume.

And darkness was upon the face of the data workers.

And they spoke amongst themselves, saying: “Big Data, is a crock of shit, and it stinketh mucho”.

And the data workers went unto their Data Supervisors and said: “This here Big Data is a pile of putrid crappy keech”, for they were from Govan, and continued, “and none may abide the odour thereof”.

And the Data Supervisors went unto their Information Managers, saying: “Big Data is a container of excrement, and it is very strong, such that none may abide by it.”

And the Information Managers went unto their Business Directors, saying: “This here Big Data doodoo is a vessel of fertilizer, and none may abide its strength.”

And the Business Directors spoke amongst themselves, saying to one another: “Big Data contains that which aids plant growth, and it is very powerful.”

And the Vice Presidents went unto the President, saying unto him: “This new Big Data will actively promote the growth and vigour of the company, with powerful effects.”

And the President looked upon the Big Iron, the Big Data and the Big Data Plan, and saw that they were good.

Many thanks for reading

Join The Big Data Contrarians

The Big Data Contrarians

All Data: It’s about statistics

30 Fri Jan 2015

Posted by Martyn Jones in All Data, Consider this, DW 3.0, Good Strat, Good Strategy, Information Supply Frameowrk, Martyn Jones, Martyn Richard Jones, statistics

≈ Leave a comment

Tags

All Data, Big Data, business intelligence, Good Strat, Good Strategy, Martyn Jones, Martyn Richard Jones, statistics


LinkedInHeader1

A big computer, a complex algorithm and a long time does not equal science.

Robert Gentleman

To begin at the beginning

Fueled by the new fashions on the block, principally Big Data, the Internet of Things, and to a lesser extent Cloud computing, there’s a debate quietly taking please over what statistics is and is not, and where it fits in the whole new brave world of data architecture and management. For this piece I would like to put aspects of this discussion into context, by asking what ‘Core Statistics’ means in the context of the DW 3.0 Information Supply Framework.

Core Statistics on the DW 3.0 Landscape

The following diagram illustrates the overall DW 3.0 framework:

There are three main concepts in this diagram: Data Sources; Core Data Warehousing; and, Core Statistics.

Data Sources: All current sources, varieties, velocities and volumes of data available.

Core Data Warehousing: All required content, including data, information and outcomes derived from statistical analysis.

Core Statistics: This is the body of statistical competence, and the data used by that competence. A key data component of Core Statistics is the Analytics Data Store, which is designed to support the requirements of statisticians.

The focus of this piece is on Core Statistics. It briefly looks at the aspect of demand driven data provisioning for statistical analysis and what ‘statistics’ means in the context of the DW 3.0 framework.

Demand Driven Data Provisioning

The DW 3.0 Information Supply Framework isn’t primarily about statistics it’s about data supply. However, the provision of adequate, appropriate and timely demand-driven data to statisticians for statistical analysis is very much an integral part of the DW 3.0 philosophy, framework and architecture.

Within DW 3.0 there are a number of key activities and artifacts that support the effective functioning of all associated processes. Here are some examples:

All Data Investigation: An activity centre that carries out research into potential new sources of data and analyses the effectiveness of existing sources of data and its usage. It is also responsible for identifying markets for data owned by the organization.

All Data Brokerage: An activity that focuses on all aspects of matching data demand to data supply, including negotiating supply, service levels and quality agreements with data suppliers and data users. It also deals with contractual and technical arrangements to supply data to corporate subsidiaries and external data customers.

All Data Quality: Much of the requirements for clean and useable data, regardless of data volumes, variety and velocity, have been addressed by methods, tools and techniques developed over the last four decades. Data migration, data conversion, data integration, and data warehousing have all brought about advances in the field of data quality. The All Data Quality function focuses on providing quality in all aspects of information supply, including data quality, data suitability, quality and appropriateness of data structures, and data use.

All Data Catalogue: The creation and maintenance of a catalogue of internal and external sources of data, its provenance, quality, format, etc. It is compiled based on explicit demand and implicit anticipation of demand, and is the result of an active scanning of the ‘data markets’, ‘potential new sources’ of data and existing and emerging data suppliers.

All Data Inventory: This is a subset of the All Data Catalogue. It identifies, describes and quantifies the data in terms of a full range of metadata elements, including provenance, quality, and transformation rules. It encompasses business, management and technical metadata; usage data; and, qualitative and quantitative contribution data.

Of course there are many more activities and artifacts involved in the overall DW 3.0 framework.

Yes, but is it all statistics?

Statistics, it is said, is the study of the collection, organization, analysis, interpretation and presentation of data. It deals with all aspects of data, including the planning of data collection in terms of the design of surveys and experiments; learning from data, and of measuring, controlling, and communicating uncertainty; and it provides the navigation essential for controlling the course of scientific and societal advances[i]. It is also about applying statistical thinking and methods to a wide variety of scientific, social, and business endeavors in such areas as astronomy, biology, education, economics, engineering, genetics, marketing, medicine, psychology, public health, sports, among many.

Core Statistics supports micro and macro oriented statistical data, and metadata for syntactical projection (representation-orientation); semantic projection (content-orientation); and, pragmatic projection (purpose-orientation).

The Core Statistics approach provides a full range of data artifacts, logistics and controls to meet an ever growing and varied demand for data to support the statistician, including the areas of data mining and predictive analytics. Moreover, and this is going to be tough for some people to accept, the focus of Core Statistics is on professional statistical analysis of all relevant data of all varieties, volumes and velocities, and not, for example, on the fanciful and unsubstantiated data requirements of amateur ‘analysts’ and ‘scientists’ dedicated to finding causation free correlations and interesting shapes in clouds.

That’s all folks

This has been a brief look at the role of DW 3.0 in supplying data to statisticians.

One key aspect of the Core Statistics element of the DW 3.0 framework is that it renders irrelevant the hyperbolic claims that statisticians are not equipped to deal with data variety, volumes and velocity.

Even with the advent of Big Data alchemy is still alchemy, and data analysis is still about statistics.

If you have any questions about this aspect of the framework then please feel free to contact me, or to leave a comment below.

Many thanks for reading.

Catalogue under: #bigdata #technology

[i] Davidian, M. and Louis, T. A., 10.1126/science.1218685


File under: Good Strat, Good Strategy, Martyn Richard Jones, Martyn Jones, Cambriano Energy, Iniciativa Consulting, Iniciativa para Data Warehouse, Tiki Taka Pro

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 640 other subscribers.

Top posts

  • X Is Dying In Europe: Here's Why - Revisited - 2026/02/16
  • Understanding the Data Warehouse Dilemma - 2026/02/07
  • X Is Dying In Europe: Here's Why
  • Top Countries Known for Arrogance and Ignorance
  • Mobile Device Revolution: Five Trends for 2026
  • Brexit is Bullshit
  • Fixing the Data Warehouse - 2026/02/10
  • A Brief History of Data Warehousing - 2026/01/07
  • Leadership 7s: Management Talking Points #1
  • Top Influencer Mode - Masterclass Content

Recent Comments

Martyn Jones's avatarMartyn Jones on The BBC in Crisis: Navigating…
Martyn Jones's avatarMartyn Jones on The BBC in Crisis: Navigating…
Martyn de Tours's avatarMartyn de Tours on The Perpetual Victim: How Prof…
Tiffany's avatarTiffany on Consider this: Data Made …
Unknown's avatarThe Case for a Globa… on REVEALING WEALTH: USING BIG DA…
Follow GOOD STRATEGY on WordPress.com

Meta

  • Create account
  • Log in
  • Entries feed
  • Comments feed
  • WordPress.com

Names in the cloud

All Data Ask Martyn awareness Big Data Big Data 7s Big Data Analytics Business Intelligence business strategy Consider this dark data data architecture Data governance Data Lake data management data science Data Supply Framework Data Warehouse Data Warehousing Good Strat goodstrat Good Strategy Inform, educate and entertain. IT strategy Martyn Jones Martyn Richard Jones pig data Politics Strategy The Amazing Big Data Challenge The Big Data Contrarians

Recent articles

  • X Is Dying In Europe: Here’s Why – Revisited – 2026/02/16 Feb 16, 2026
  • The Promised Banality of Evil – Revisited Feb 16, 2026
  • Grok, What Do You Make of Martyn Rhisiart Jones’ Take on Big Data? Feb 15, 2026
  • Consider This: In Praise of Shadow-Apps – 2026/02/16 Feb 15, 2026
  • Building the Data Logistics Hub: Pieces and Parts – 2026/02/15 – Part 3 Feb 14, 2026
  • Building the Data Logistics Hub: The Strategy – 2026/02/14 – Part 2 Feb 14, 2026
  • Celtic Mysticism Meets Valentine’s Day Feb 13, 2026

Hours & Info

Spain
+34 692 376 698
martyn.jones@martyn.es
Lunch: 13:30pm - 14:30pm
Dinner: M-Th 20:00pm - 21:00pm, Fri-Sat:21:00pm - 22:00pm

The Stats

  • 118,875 hits

Meta

  • Create account
  • Log in
  • Entries feed
  • Comments feed
  • WordPress.com
Log in

Hours & Info

Martyn Richard Jones
Madrid, Spain
+34 692 376 698
martyn.jones@martyn.es
10:00 - 17:00
Follow GOOD STRATEGY on WordPress.com
  • X Is Dying In Europe: Here’s Why – Revisited – 2026/02/16
  • The Promised Banality of Evil – Revisited
  • Grok, What Do You Make of Martyn Rhisiart Jones’ Take on Big Data?
  • Consider This: In Praise of Shadow-Apps – 2026/02/16
  • Building the Data Logistics Hub: Pieces and Parts – 2026/02/15 – Part 3

Top Good Strat Posts & Pages

  • X Is Dying In Europe: Here's Why - Revisited - 2026/02/16
  • Understanding the Data Warehouse Dilemma - 2026/02/07
  • Good Strategy: With Martyn Rhisiart Jones, Sir Afilonius Rex and Lila de Alba.
  • X Is Dying In Europe: Here's Why
  • Top Countries Known for Arrogance and Ignorance
  • Mobile Device Revolution: Five Trends for 2026
  • Brexit is Bullshit
  • Fixing the Data Warehouse - 2026/02/10
  • A Brief History of Data Warehousing - 2026/01/07
  • Leadership 7s: Management Talking Points #1

Good strat tag cloud

AI All Data Analytics Artificial Intelligence Behavioural Economics BI Big Data bigdata blog books bullshit Business business analysis Business Enablement business intelligence Business Management business strategy chatgpt cloud Consider this data data integration data management data science Data Warehouse Data Warehousing Demagogism digital-marketing Dogma Donald Trump enterprise data warehousing espanol EU fe fiction gaza goodstart good start Good Strat goodstrat Good Strategy hamas history ia information Information and Technology information management Information Technology israel IT Strategy jesus knowledge leadership llm machine learning Marketing Martyn Jones Martyn Richard Jones News Offshoring Organisational Autism palestine Philosophy poesia Poetry Politics Russia Spain statistics Strategy technology trump USA Wales writing

Categories

  • accountability
  • advertising
  • agile
  • agile way of working
  • agile@scale
  • AI
  • All Data
  • Analytics
  • anthropology
  • Architecture
  • Artificial Intelligence
  • Ask Martyn
  • Assets
  • awareness
  • bad strategy
  • Banking
  • behaviour
  • Best principles
  • Big Data
  • Big Data 7s
  • Big Data Analytics
  • blockchain
  • Books with influence
  • Brexit
  • BS
  • business
  • Business Intelligence
  • business strategy
  • Cambriano
  • Cambridge Analytica
  • China
  • Climate Change
  • Cloud
  • code of conduct
  • Commercial Analytics
  • community
  • Condiser this
  • Conservative Party
  • consider
  • Consider this
  • Consultation
  • Creativity
  • Culture
  • dark data
  • data
  • data architecture
  • Data governance
  • data hub
  • Data Lake
  • data management
  • Data Mart
  • data mesh
  • data science
  • Data Supply Framework
  • Data Warehouse
  • Data Warehousing
  • deceit
  • deep learning
  • Democracy
  • digital transformation
  • Diplomacy
  • disinformation
  • Dogma
  • Duties
  • DW 3.0
  • ECM
  • Economics
  • EDW
  • England
  • enterprise content management
  • ethics
  • EU
  • Europe
  • European Union
  • Excellence
  • Excerpt
  • Executive
  • Extract
  • Federalism
  • films
  • Financial Industry
  • fraud
  • Freedoms
  • Globalisation
  • good start
  • Good Strat
  • Good Strategy
  • Good Strategy Radio
  • goodstart
  • goodstartegy
  • goodstrat
  • goostart
  • governance
  • hadoop
  • hdfs
  • HR
  • humour
  • India
  • influencers
  • Inform, educate and entertain.
  • informatio Supply Framework
  • information
  • Information Management
  • Information Supply Frameowrk
  • Information Supply Framework
  • Infotrends
  • Inmon
  • instruments
  • IoT
  • IT Circus
  • IT fraud
  • IT strategy
  • IT World
  • iterations
  • java
  • Knowledge
  • knowledge management
  • Labour Party
  • leadership
  • Leadership 7s
  • life
  • listening
  • literature
  • Love
  • LSE
  • machine learning
  • Management
  • market forces
  • Marketing
  • Marty does
  • Martyn does
  • Martyn Jones
  • Martyn Richard Jones
  • Masterclass
  • media
  • Memory lane
  • Methodology
  • nationalism
  • nine competitive forces
  • no limits
  • Northern Ireland
  • obituary
  • Obligations
  • offshore
  • Offshoring
  • operational
  • Outsourcing
  • Oxford
  • pain
  • Parliament
  • Peeves
  • Personal Integrity Key
  • Philosophy
  • pig data
  • PIK
  • PIR
  • Plaid Cymru
  • Planning
  • poem
  • poems
  • Poetry
  • Polemic
  • political science
  • Politics
  • pomo
  • postmodern
  • POTUS
  • PPE
  • Process
  • Professional Networking
  • professionalism
  • project management
  • Project to Excel
  • prose
  • public
  • Public Integrity Record
  • Quiz
  • Rant
  • Referendum
  • Remain
  • RIghts
  • Risk
  • Rivalry
  • romance
  • Russia
  • Ruth Davidson
  • Sales
  • satire
  • Scotland
  • Scottish National Party
  • scrum
  • sentiment analysis
  • SMILES
  • Snippet
  • SNP
  • Social
  • Social Media
  • Sociology
  • Spain
  • spoof
  • statistics
  • Stories
  • Strategy
  • structured intellectual capital
  • supply chain management
  • tactics
  • Tax avoidance
  • Tax evasion
  • TEAM
  • technology
  • The Amazing Big Data Challenge
  • The Big Data Contrarians
  • The Greens
  • The Guardian
  • The hidden wealth of nations
  • Trade
  • UK
  • Uncategorized
  • United Kingdom
  • USA
  • Valentine
  • Value
  • Wales
  • wisdom

Blog at WordPress.com.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
  • Subscribe Subscribed
    • GOOD STRATEGY
    • Join 138 other subscribers.
    • Already have a WordPress.com account? Log in now.
    • GOOD STRATEGY
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...