Debunking the Myth: Zionism vs Judaism Explained

Tags

, , , , , , , , , , ,


David Jacobs wrote the following comment on X:

“Many on this platform still believe that they can tease Zionism away from Judaism. That’s not possible. It’s time for me to repost my previous explanation. And yes, if you use ‘Zionist’ as a slur, or rage against Zionists, you are indeed a Jew hater.”

This is a considered and measured response to that tweet and associated tweets.

Continue reading

Future Data Trends: Insights for 2026 Leadership

Tags

, , , , , , , , , , ,


Top 5 Trends Shaping the Future of Data, Analytics, and AI Leadership in 2026

I’ve had the privilege of leading a groundbreaking global study in partnership with a strategic client. During this study, I spoke with many key Chief Data Officers (CDOs). I also engaged with Chief Data & Analytics Officers (CDAOs) and AI executives across industries and geographies. The insights reveal how organisations are changing their data and AI strategies. They aim to drive real business value in an increasingly complex world.

Continue reading

Understanding Data-Less Apps: The Future of IT

Tags

, , , ,


Dublin 9th May 2017 –  revised 21st December 2025

Continue reading

L’évolution des entrepôts de données en 2025/2026

Tags

, , , , , , , , , , , , , , , , , , , , , , ,


Segovia 20th December 2025

L’entrepôt de données est mort. Vive l’entrepôt de données !

En 1992, Bill Inmon a inventé le terme « entrepôt de données » et a défini quatre règles d’or : orienté sujet, intégré, non volatil et temporel. C’était le modèle d’une forteresse de vérité, coûteuse, sur site, fonctionnant par lots et absolument indispensable. Trente ans plus tard, cette forteresse a laissé place à une plateforme cloud hyperscale. Cette plateforme peut exécuter simultanément vos modèles d’IA et le tableau de bord de votre PDG. Bienvenue dans l’entreposage de données de 2025.

Continue reading

Evoluzione del Data Warehouse: Da Inmon al Cloud 2025/2026

Tags

, , , , , , , , , , , , , , , , , , ,


Segovia 20th December 2025

Il Data Warehouse è morto. Lunga vita al Data Warehouse.

Nel 1992, Bill Inmon coniò il termine “data warehouse”. Definì quattro regole sacre: orientato al soggetto, integrato, non volatile, e variabile nel tempo. Era il modello per una fortezza della verità, costosa, on-premise, elaborata in batch e assolutamente indispensabile. Facciamo un salto in avanti di tre decenni. La fortezza è stata sostituita da qualcosa che assomiglia a una piattaforma cloud iperscalabile. Questa piattaforma può gestire contemporaneamente i tuoi modelli di intelligenza artificiale e la dashboard del tuo CEO. Benvenuti al data warehouse nel 2025.

Continue reading

El Nuevo Almacén de Datos: Evolución y Revolución

Tags

, , , , , , , , , , , , , , ,


Segovia 20th December 2025

El almacén de datos ha muerto. ¡Viva el almacén de datos!

En 1992, Bill Inmon acuñó el término “almacén de datos” y estableció cuatro reglas sagradas: orientado al sujeto, integrado, no volátil y variable en el tiempo. Era el modelo para una fortaleza de la verdad, costosa, local, con procesamiento por lotes y absolutamente indispensable. Tres décadas después, la fortaleza ha sido reemplazada por algo similar a una plataforma en la nube a hiperescala. Esta plataforma puede ejecutar simultáneamente tus modelos de IA y el panel de control de tu director ejecutivo. Bienvenido al almacenamiento de datos en 2025.

Continue reading

Is the Data Warehouse Dead? Exploring New Paradigms

Tags

, , , , , , , , ,


Segovia 20th December 2025

The Data Warehouse Is Dead. Long Live the Data Warehouse.

In 1992, Bill Inmon coined the term “data warehouse” and laid out four sacred rules: subject-oriented, integrated, non-volatile, time-variant. It was a blueprint for a fortress of truth, expensive, on-premises, batch-processed, and utterly indispensable. Fast-forward three decades. The fortress has been replaced by something that resembles a hyperscale cloud platform. This platform can run your AI models and your CEO’s dashboard simultaneously. Welcome to data warehousing in 2025.

Continue reading

The Evolution of Data Warehousing: Principles for 2026

Tags

, , , , , , , , , , ,


Introduction

The data warehouse has undergone a profound transformation over the past decade. Expensive, rigid, on-premises systems were once built for batch reporting. These systems have now evolved into cloud-native, highly scalable platforms. They are designed to meet the demands of today’s data-driven organisations.

Continue reading

The Truth About Data Lakehouses: Hype vs. Reality

Tags

, , , ,


Hype and Misleading Claims Surrounding Data Lakehouses

A data lakehouse is marketed as a hybrid architecture. It combines the low-cost, flexible storage of data lakes. These lakes handle raw, unstructured data at scale. It also offers the structured querying, performance, and ACID (Atomicity, Consistency, Isolation, Durability) transactional capabilities of data warehouses. Vendors like Databricks coined the term. Snowflake and others promote it as a platform for analytics. It serves AI and machine learning needs. This approach eliminates data silos and reduces redundant copies. It enables cost-effective scaling through open standards and decoupled storage and compute models. However, much of this is hype driven by vendor marketing. Vendors promote it as an evolution from “data swamps” (unmanaged data lakes) and rigid warehouses.

Continue reading